杜江波 陆群 靳光付 夏彦恺 沈洪兵 胡志斌
大型人群队列研究因具有大样本量、多时间点数据等特点,使得其在病因学研究领域具有独特优势,同时也带来了数据管理与质量控制方面的巨大的工作难度。我国近年来启动多项大型人群队列研究,相关队列数据的管理与质控工作面临巨大挑战。本文综合当前我国队列研究领域已有经验和共识,从队列数据特点出发,针对问卷调查数据、临床诊疗数据、生物样本检测数据和观察结局数据等四种主要来源的队列数据的类型和主要形式,从数据存储、流转及传输等工作环节,全面概括了队列数据管理相关工作内容与方法,并针对这些队列数据,从调查问卷评估、数据逻辑核查、调查对象抽查以及多数据库复核等多种途径提出了相应的数据质控策略,以期为我国人群队列研究中数据管理与质控相关策略的制定提供借鉴。
Large-scale cohort study has unique advantages in the field of etiology research for its large sample size a multi-time point data, but it also brings great difficulty in data management and quality control at the same time. Recently, China has initiated a number of large-scale population cohort studies, posing enormous challenges to the management and quality control of related cohort data. This paper summarizes the existing experience and consensus in the field of cohort study in China from the characteristics of the cohort data, aiming at the types and main forms of the four main sources of questionnaire data, clinical diagnosis and treatment data, biological sample detection data and observation outcome data, from the data storage, circulation and transmission work.The contents and methods of queue data management are comprehensively summarized. Corresponding data quality control strategies are advised in the questionnaire evaluation, data logic verification, survey object sampling and multi-database review, etc. The goal of this review is to provide guidance for the management of data and the formulation of quality control strategies in the cohort study in China.
全文链接:http://rs.yiigle.com/CN112150201810/1074319.htm